The fundamental discoveries of Darwin and Mendel established the scientific basis for plant breeding and genetics at the turn of the 20th century. Similarly, the recent integration of advances in biotechnology, genomic research, and molecular marker applications with conventional plant breeding practices has created the foundation for molecular plant breeding, an interdisciplinary science that is revolutionizing 21st century crop improvement. Though the methods of molecular plant breeding continue to evolve and are a topic of intense interest among plant breeders and crop scientists (for review, see Cooper et al., 2004;Nelson et al., 2004;Lö rz and Wenzel, 2005;Varshney et al., 2006;Eathington et al., 2007;Mumm, 2007), they have received relatively little attention from the majority of plant biologists engaged in basic scientific research. The objective of this article for an Editor's Choice series on future advances in crop biotechnology is to briefly review important historical developments in molecular plant breeding, key principles influencing the current practice of molecular plant breeding, and factors that influence the adoption of molecular plant breeding in crop improvement programs. Furthermore, we emphasize how the application of molecular plant breeding is now contributing to discoveries of genes and their functions that open new avenues for basic plant biology research.