On the basis of the free radical and rate of living theories of aging, it has been proposed that decreased metabolism leads to increased longevity through a decreased production of reactive oxygen species (ROS). In this article, we examine the relationship between mitochondrial energy metabolism and life span by using the Clk mutants in Caenorhabditis elegans. Clk mutants are characterized by slow physiologic rates, delayed development, and increased life span. This phenotype suggests that increased life span may be achieved by decreasing energy expenditure. To test this hypothesis, we identified six novel Clk mutants in a screen for worms that have slow defecation and slow development and that can be maternally rescued. Interestingly, all 11 Clk mutants have increased life span despite the fact that slow physiologic rates were used as the only screening criterion. Although mitochondrial function is decreased in the Clk mutants, ATP levels are normal or increased, suggesting decreased energy utilization. To determine whether the longevity of the Clk mutants results from decreased production of ROS, we examined sensitivity to oxidative stress and oxidative damage. We found no evidence for systematically increased resistance to oxidative stress or decreased oxidative damage in the Clk mutants despite normal or elevated levels of superoxide dismutases. Overall, our findings suggest that decreased energy metabolism can lead to increased life span without decreased production of ROS. clk-1 was originally identified in worms in a screen for maternally rescued mutations that result in abnormal development and behavior. In addition to slow development and slow defecation, clk-1 mutants show decreased brood size, a decreased rate of thrashing, and a decreased rate of pharyngeal pumping (Wong et al. 1995). It was a surprise, however, that clk-1 worms also displayed extended longevity, because, at the time that it was discovered, only two other mutants, age-1 and daf-2, with very different phenotypes, had been found to extend longevity (Friedman and Johnson 1988;Kenyon et al. 1993).It is currently uncertain how mutations in clk-1 result in the overall slowing of development and physiologic rates as well as an extended life span. One classic theory of aging, called the rate of living theory, postulates the existence of a link between energy metabolism and aging (Pearl 1922;Speakman 2005). This theory proposes that what determines the life span of an organism is the rate at which it produces and uses energy at the cellular level. Thus, the fact that clk-1 worms exhibit slow physiologic rates and development suggests a decrease in the rate that these worms utilize energy, and, by the rate of living theory, this could account for their long life span.In support of the rate of living theory, the loss of clk-1 has been shown to result in decreased whole-worm oxygen consumption (Felkai et al. 1999;Yang et al. 2007) and decreased electron transfer from complex I to complex III in the electron transport chain (Kayser et al....