Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Intervertebral disc degeneration (IDD) is a prevalent spinal disorder and the principal cause of lower back pain (LBP). Diverse forms of programmed cell death (PCD) have been identified as the key phenotypes of the disease and have the potential to serve as new indicators for the diagnosis and prognosis of IDD. However, the mechanism underlying necroptosis in IDD remains unclear. This study aimed to identify novel biomarkers that promote nucleus pulposus cell necroptosis in IDD using bioinformatic analysis and experimental validation. We analyzed multiple datasets of IDD from the Gene Expression Omnibus (GEO) database to identify necroptosis-related IDD differential genes (NRDEGs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed, followed by logistic least absolute shrinkage and selection operator (LASSO) and support vector machine-recursive (SVM) algorithms to identify key genes. Gene set enrichment analysis (GSEA) and logistic regression analysis were used to ascertain the potential functions of these genes and to identify key genes, respectively. We then constructed mRNA-miRNA, mRNA-TF, mRNA-drug, and functional similarity gene interaction networks for the seven key genes identified. We used IDD clinical samples and necroptotic cell model to validate our findings. Immunohistochemical staining, RT-qPCR, and western blotting results indicated that IRF1 may be a hub necroptosis-related gene. To further elucidate the function of IRF1 , we constructed IRF1 knockdown and overexpression models, which revealed that IRF1 promotes necroptosis in rat nucleus pulposus cells, increases mitochondrial ROS levels, and decreases ATP levels. These findings provide new insights into the development of necroptosis in IDD and, for the first time, validate the role of IRF1 as a novel biomarker for the diagnosis and treatment of IDD. Supplementary Information The online version contains supplementary material available at 10.1038/s41598-024-81681-8.
Intervertebral disc degeneration (IDD) is a prevalent spinal disorder and the principal cause of lower back pain (LBP). Diverse forms of programmed cell death (PCD) have been identified as the key phenotypes of the disease and have the potential to serve as new indicators for the diagnosis and prognosis of IDD. However, the mechanism underlying necroptosis in IDD remains unclear. This study aimed to identify novel biomarkers that promote nucleus pulposus cell necroptosis in IDD using bioinformatic analysis and experimental validation. We analyzed multiple datasets of IDD from the Gene Expression Omnibus (GEO) database to identify necroptosis-related IDD differential genes (NRDEGs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed, followed by logistic least absolute shrinkage and selection operator (LASSO) and support vector machine-recursive (SVM) algorithms to identify key genes. Gene set enrichment analysis (GSEA) and logistic regression analysis were used to ascertain the potential functions of these genes and to identify key genes, respectively. We then constructed mRNA-miRNA, mRNA-TF, mRNA-drug, and functional similarity gene interaction networks for the seven key genes identified. We used IDD clinical samples and necroptotic cell model to validate our findings. Immunohistochemical staining, RT-qPCR, and western blotting results indicated that IRF1 may be a hub necroptosis-related gene. To further elucidate the function of IRF1 , we constructed IRF1 knockdown and overexpression models, which revealed that IRF1 promotes necroptosis in rat nucleus pulposus cells, increases mitochondrial ROS levels, and decreases ATP levels. These findings provide new insights into the development of necroptosis in IDD and, for the first time, validate the role of IRF1 as a novel biomarker for the diagnosis and treatment of IDD. Supplementary Information The online version contains supplementary material available at 10.1038/s41598-024-81681-8.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.