Research on nematode management globally highlights the use of nematicidal biomolecules and biocontrol agents. However, the availability of biomolecules to manage plant‐parasitic nematodes remains limited. The discovery of microbial biomolecules offers new opportunities in this field, though they are underexplored for suppressing nematodes. This study focused on identifying biomolecules from Bacillus licheniformis (MW301654) to manage Meloidogyne incognita, a root‐knot nematode infecting banana. In silico protein–ligand interactions revealed that, Nicotinamide mononucleotide, produced during the ditrophic interaction of B. licheniformis (MW301654) with Fusarium oxysporum f. sp. cubense was effective against M. incognita protein targets including cytochrome C oxidase subunit 1, calreticulin, neuropeptide G‐protein coupled receptor, chorismate mutase 1, venom allergen‐like proteins and β‐1,4‐endoglucanase than the commercially used nematicides carbofuran 3G and fluensulfone. In vitro bioassays further validated nicotinamide mononucleotide nematicidal activity. At concentrations of 93, 76, and 69 ppm, nicotinamide mononucleotide caused 50% mortality of second‐stage juveniles after 24, 48, and 72 h, respectively, while 213, 132, and 101 ppm resulted in 95% mortality. Egg hatching was also significantly reduced, with only 1% hatching at 150 ppm. The study emphasized the potential of Nicotinamide mononucleotide as a novel biopesticide for the management of M. incognita infection in banana.