To evaluate phosphorus (P)-stress-induced relative growth responses, P-efficiency characteristics, P remobilization, and redesign in root architectural systems, Brassica cultivars were grown with sparingly soluble rock phosphate and calcium phosphate [Ca 3 (PO 4 ) 2 ] or with low/high P supply in solution and sand culture experiments. Tested cultivars showed considerable genetic diversity in biomass accumulation, concentration and contents of P, P-stress factor (PSF), and P-efficiency characteristics [P-utilization efficiency (PUE), P efficiency (PE), and P-efficiency ratio (PER)]. Statistically significant correlations were observed between P efficiency and growth parameters. Elongation rates of primary roots decreased but the length of lateral roots and branched zone elongation rates increased under P starvation. Cultivars remobilized P from metabolically inactive to active sites in P-stressed plants that may have helped low-P-tolerant cultivars to establish a better rooting system, which provided basis for enhanced P-use efficiency and tolerance against P stress. Cultivars depicting high P efficiency and low PSF values were more tolerant and are a better choice to grow under P-stress environments.