Abstract. MicroRNAs (miRs) regulate the proliferation and metastasis of numerous cancer cell types. It was previously reported that miR-143 levels were downregulated in non-small cell lung cancer (NSCLC) tissues and cell lines, and that the migration and invasion of NSCLC cells was inhibited upon suppression of cell proliferation and colony formation by the upregulation of miR-143. Epidermal growth factor receptor (EGFR), which is a vital factor in the promotion of cancer cell proliferation and has been investigated as a potential focus in cancer therapy, has been reported to be a possible target of miR-143. The present study aimed to investigate the role of miR-143 in NSCLC using NSCLC cell lines and primary cells from NSCLC patients. NSCLC cells were co-transfected with EGFR and miR-143, and the mRNA and protein expression of EGFR were analyzed. Furthermore, the activity of the transfected cancer cells with regard to colony formation, migration, invasion and apoptosis were evaluated. The levels of miR-143 were decreased in the NSCLC cell lines and primary cells from patients with NSCLC compared with the controls. Following transfection with miR-143, the ability of NSCLC cells to proliferate, form colonies, migrate and invade was inhibited. Similarly, knockdown of EGFR led to the suppression of NSCLC cell proliferation. The mRNA and protein expression levels of EGFR were significantly reduced following miR-143 overexpression, and the level of miR-143 was inversely correlated with that of EGFR in NSCLC cells. The results of the present study demonstrated that miR-143 was able to suppress NSCLC cell proliferation and invasion by inhibiting the effects of EGFR, suggesting that EGFR may be considered a potential target for NSCLC therapy.