Although many rapid and high throughput molecular methods have been developed in the recent years for the multiplex detection of foodborne pathogens, the simultaneous recovery and enrichment of sublethally injured cells is still a problem that needs to be considered. Combined with previous established multiplex real-time PCR assay, the capability of simultaneous recovery and enrichment of sublethally injured Salmonella, E. coli O157:H7 and L. monocytogenes cells was evaluated in a multiplex selective enrichment broth SEL. The injured cells were obtained by heat shock. After evaluation of different procedures, 1 h of recovery period prior to 20 h of enrichment was proved to be necessary for the detection of less than 10 CFU/5 mL broth of injured L. monocytogenes. When the detection method was applied to artificially contaminated ground beef, all the three injured pathogens could be simultaneously detected without discrimination by real-time PCR combined with SEL broth, the detection limit was < 5 CFU/10 g ground beef. Comparatively, when BPW was employed as the enrichment broth in the same detection procedure, injured L. monocytogenes could not be detected if the initially spiked level was below 102 CFU/10 g ground beef. Considering the capability of co-enrichment and high detection effectiveness, the real-time PCR assay combined with SEL broth herein appears to be a promising tool for high-throughput screening of a large number of processed food samples, which require either single or multiple pathogen detection. More important, the sublethally injured foodborne pathogen cells were also detectable.