Luminogens with aggregation‐induced emission properties (AIEgens), as a novel and attractive fluorescent molecule, have been used in various fields, such as detection, imaging, and disease treatment, which can overcome the traditional aggregation‐caused quenching of organic fluorescent molecules. Nevertheless, AIEgens still have the problems of water solubility and fluorescence stability in practical applications. Aiming for improving the AIEgens’ performance and promoting the development of diverse applications of AIEgens, it is an available strategy to bind AIEgens to those inorganic materials with abundant variety, easy synthesis, and a unique rigid pore structure. The constructed inorganic‐based AIE materials not only inherit the unique luminescence characteristics of AIEgens, but also retain the biocompatibility and degradability of inorganic materials, endowing AIEgens with more attractive versatility. Herein, the up‐to‐date researches of several representative inorganic‐based AIE materials are introduced, with emphasis on their structure design, synthesis strategy, regulation of fluorescence properties of AIE, and their application in the biological field. Finally, the current situation, challenges, and future development potential of inorganic‐based AIE materials are discussed and prospected.