The emergence of multidrug-resistant (MDR) Klebsiella pneumoniae remains a global health threat due to its alarming rates of becoming resistant to antibiotics. Therefore, identifying plant-based treatment options to target this pathogen’s virulence factors is a priority. This study examined the antivirulence activities of twelve plant extracts obtained from three South African medicinal plants (Lippia javanica, Carpobrotus dimidiatus, and Helichrysum populifolium) against carbapenem-resistant (CBR) and extended-spectrum beta-lactamase (ESBL) positive K. pneumoniae strains. The plant extracts (ethyl acetate, dichloromethane, methanol, and water) were validated for their inhibitory activities against bacterial growth and virulence factors such as biofilm formation, exopolysaccharide (EPS) production, curli expression, and hypermucoviscosity. The potent extract on K. pneumoniae biofilm was observed with a scanning electron microscope (SEM), while exopolysaccharide topography and surface parameters were observed using atomic force microscopy (AFM). Chemical profiling of the potent extract in vitro was analysed using liquid chromatography-mass spectrometry (LC-MS). Results revealed a noteworthy minimum inhibitory concentration (MIC) value for the C. dimidiatus dichloromethane extract at 0.78 mg/mL on CBR- K. pneumoniae. L. javanica (ethyl acetate) showed the highest cell attachment inhibition (67.25%) for CBR- K. pneumoniae. SEM correlated the in-vitro findings, evidenced by a significant alteration of the biofilm architecture. The highest EPS reduction of 34.18% was also noted for L. javanica (ethyl acetate) and correlated by noticeable changes observed using AFM. L. javanica (ethyl acetate) further reduced hypermucoviscosity to the least length mucoid string (1 mm-2 mm) at 1.00 mg/mL on both strains. C. dimidiatus (aqueous) showed biofilm inhibition of 45.91% for the ESBL-positive K. pneumoniae and inhibited curli expression at 0.50 mg/mL in both K. pneumoniae strains as observed for H. populifolium (aqueous) extract. Chemical profiling of L. javanica (ethyl acetate), C. dimidiatus (aqueous), and H. populifolium (aqueous) identified diterpene (10.29%), hydroxy-dimethoxyflavone (10.24%), and 4,5-dicaffeoylquinic acid (13.41%), respectively, as dominant compounds. Overall, the ethyl acetate extract of L. javanica revealed potent antivirulence properties against the studied MDR K. pneumoniae strains. Hence, it is a promising medicinal plant that can be investigated further to develop alternative therapy for managing K. pneumoniae-associated infections.