Mitochondrial genomes of three stoneflies, e.g., Claassenia magna Wu, 1948, Claassenia sp. 2 and Claassenia xucheni Chen, 2019 were sequenced in this study with 15,774, 15,777 and 15,746 bp in length, respectively. Each mitogenome contained 37 genes including 22 tRNAs, two ribosomal RNAs, 13 protein-coding genes (PCGs), and a noncoding control region (CR). In general, standard ATN start and TAN termination codons were evident in the PCGs. Although the dihydrouridine arm was absent in trnSer, the remaining 21 tRNAs displayed the characteristic cloverleaf secondary structure. Stem-loop structures were identified in the CRs of all three mitogenomes, but tandem repeats were only apparent in Claassenia xucheni. The mitogenomes of three Claassenia species were analyzed and compared with mitogenomes in 21 other stoneflies from the Perlidae and three Euholognatha species (Rhopalopsole bulbifera, Capnia zijinshana and Amphinemura longispina) as outgroups. Phylogenetic analyses using maximum likelihood and Bayesian inference. Phylogenetic analysis supported that Claassenia was recovered as the sister group of other Perlinae and Claassenia+Perlinae emerged from the paraphyletic Acroneuriinae. The final results supported that Claassenia was classified into subfamily Perlinae and proposed Claassenia represent a transitional group of the subfamilies Acroneuriinae and Perlinae. This study provided new molecular evidence for exploring the debatable taxonomic position of the genus Claassenia in Perlidae.