The Hawaiian islands are an extremely isolated oceanic archipelago, and their fauna has long served as models of dispersal in island biogeography. While molecular data have recently been applied to investigate the timing and origin of dispersal events for several animal groups including birds, insects, and snails, these questions have been largely unaddressed in Hawai'i’s only native terrestrial mammal, the Hawaiian hoary bat, Lasiurus cinereus semotus. Here, we use molecular data to test the hypotheses that (1) Hawaiian L. c. semotus originated via dispersal from North American populations of L. c. cinereus rather than from South American L. c. villosissimus, and (2) modern Hawaiian populations were founded from a single dispersal event. Contrary to the latter hypothesis, our mitochondrial data support a biogeographic history of multiple, relatively recent dispersals of hoary bats from North America to the Hawaiian islands. Coalescent demographic analyses of multilocus data suggest that modern populations of Hawaiian hoary bats were founded no more than 10 kya. Our finding of multiple evolutionarily significant units in Hawai'i highlights information that should be useful for re-evaluation of the conservation status of hoary bats in Hawai'i.