The solid-state structure of LL/DD or LD/DL diphenylalanine diluted in KBr pellets is studied by infrared (IR) absorption and vibrational circular dichroism (VCD) spectroscopy. The structure depends on the absolute configuration of the residues. The natural LL diphenylalanine exists as a mixture of neutral and zwitterionic structures, depending on the humidity of the sample, while mostly the zwitterion is observed for LD diphenylalanine whatever the experimental conditions. The system undergoes spontaneous cyclization upon heating at 125 C, resulting to the formation of a diketopiperazine (DKP) dipeptide as the only product. The reaction is faster for LD than for LL diphenylalanine. As expected, LL and DD diphenylalanine react to form the LL and DD enantiomers of cyclo diphenylalanine. Interestingly, the DKP dipeptides formed from the LD or DL diphenylalanine show unexpected optical activity, with opposite VCD spectra for the products formed from the LD and DL reagents. This is explained in terms of chirality synchronization between the monomers within the crystal, which retain the symmetry of the reagent, resulting to the formation of a new chiral phase made from transiently chiral molecules.
K E Y W O R D Schirality synchronization, diketopiperazine (DKP), peptides, vibrational circular dichroism (VCD), vibrational spectroscopy