Biocompatible and biodegradable materials are attractive for environmentally safe, flexible and biosustainable devices since they are nontoxic renewable materials with a low cost. Gelatin, a natural protein, is a promising biopolymer for photography, cosmetic manufacturing and food. In this paper, solution-processed natural gelatin was used as a gate dielectric for the fabrication of oxide field-effect transistors (FETs). Similarly to a polyelectrolyte, mobile ions can be generated in gelatin in air environment. A high gate specific capacitance larger than 0.93 µF/cm 2 was obtained in gelatin processed at low concentrations, due to the formation of electric-double-layers (EDLs). As gelatin films processed at a low concentration of 0.02 g/mL, the fabricated FETs showed excellent electrical performances. The average current on/off ratio and the mobility were estimated to be 1.36×10 5 and 33.2 cm 2 /Vs, respectively. The proposed technique may be application in the bioelectronics field, including biosensors and synaptic devices.