Escherichia albertii is a new enteropathogen of humans and animals. The aim of the study was to assess the prevalence and pathogenicity of E. albertii strains isolated in northeastern Poland using epidemiological and genomic studies. In 2015–2018, a total of 1154 fecal samples from children and adults, 497 bird droppings, 212 food samples, 92 water samples, and 500 lactose-negative E. coli strains were tested. A total of 42 E. albertii strains were isolated. The PCR method was suitable for their rapid identification. In total, 33.3% of E. albertii isolates were resistant to one antibiotic, and 16.7% to two. Isolates were sensitive to cefepime, imipenem, levofloxacin, gentamicin, trimethoprim/sulfamethoxazole, and did not produce ESBL β-lactamases. High genetic variability of E. albertii has been demonstrated. In the PFGE method, 90.5% of the strains had distinct pulsotypes. In MLST typing, 85.7% of strains were assigned distinct sequence types (STs), of which 64% were novel ST types. Cytolethal distending toxin (CDT) and Paa toxin genes were found in 100% of E. albertii isolates. Genes encoding toxins, IbeA, CdtB type 2, Tsh and Shiga (Stx2f), were found in 26.2%, 9.7%, 1.7%, and 0.4% of E. albertii isolates, respectively. The chromosome size of the tested strains ranged from 4,573,338 to 5,141,010 bp (average 4,784,003 bp), and at least one plasmid was present in all strains. The study contributes to a more accurate assessment of the genetic diversity of E. albertii and the potential threat it poses to public health.