An extensive crystal survey of the Cambridge Structural Database has been carried out to provide hydrogen-bond data for use in drug-design strategies. Previous crystal surveys have generated 1D frequency distributions of hydrogen-bond distances and angles, which are not sufficient to model the hydrogen bond as a ligand-receptor interaction. For each hydrogen-bonding group of interest to the drug designer, geometric hydrogen-bond criteria have been derived. The 3D distribution of complementary atoms about each hydrogen-bonding group has been ascertained by dividing the space about each group into bins of equal volume and counting the number of observed hydrogen-bonding contacts in each bin. Finally, the propensity of each group to form a hydrogen bond has been calculated. Together, these data can be used to predict the potential site points with which a ligand could interact and therefore could be used in molecular-similarity studies, pharmacophore query searching of databases, or de novo design algorithms.