Model results indicated that the mean WWTP influent concentration of NoV GII (3.9 log 10 gc/liter; 95% credible interval [CI], 3.5, 4.3 log 10 gc/liter) is larger than the value for NoV GI (1.5 log 10 gc/liter; 95% CI, 0.4, 2.4 log 10 gc/liter), with large variations occurring from one WWTP to another. For WWTPs with mechanical systems and chlorine disinfection, mean log 10 reductions were ؊2.4 log 10 gc/liter (95% CI, ؊3.9, ؊1.1 log 10 gc/liter) for NoV GI, ؊2.7 log 10 gc/liter (95% CI, ؊3.6, ؊1.9 log 10 gc/liter) for NoV GII, and ؊2.9 log 10 PFU per liter (95% CI, ؊3.4, ؊2.4 log 10 PFU per liter) for MSCs. Comparable values for WWTPs with lagoon systems and chlorine disinfection were ؊1.4 log 10 gc/liter (95% CI, ؊3.3, 0.5 log 10 gc/liter) for NoV GI, ؊1.7 log 10 gc/liter (95% CI, ؊3.1, ؊0.3 log 10 gc/liter) for NoV GII, and ؊3.6 log 10 PFU per liter (95% CI, ؊4.8, ؊2.4 PFU per liter) for MSCs. Within WWTPs, correlations exist between mean NoV GI and NoV GII influent concentrations and between the mean log 10 reduction in NoV GII and the mean log 10 reduction in MSCs.H uman norovirus (NoV) is the leading cause of food-associated gastroenteritis in the United States (1) and Canada (2). U.S. residents are estimated to experience five episodes of norovirus gastroenteritis in their lifetimes (3). NoV is primarily spread via the fecal-oral route. However, attribution of a particular case of NoV illness to a specific source is complex. The transmission may be direct (person to person) or indirect (via contact with contaminated fomites) or may occur through the ingestion of contaminated food or water (4). Noroviruses are genetically diverse, comprising six genogroups (5), three of which (genogroup I [GI], GII, and GIV) are capable of causing illness in humans (6).Among foodborne NoV outbreaks, bivalve molluscs (e.g., clams, oysters, mussels), leafy vegetables, and fruits are the most frequently implicated (7). More than half of the norovirus outbreaks attributed to the consumption of bivalve molluscs in the United States during the years from 2001 to 2008 are believed to have originated from contamination during production or processing (7). Bivalve molluscan shellfish typically grow in estuaries, which may contain NoV-contaminated human fecal material from municipal wastewater outfalls, combined sewer overflow, or nonpoint sources of pollution, including human waste discharged from marine vessels (8, 9). Bivalve molluscan shellfish feed on algae from the surrounding water. During this feeding process, each bivalve mollusc may filter 20 to 90 liters of water per day and bioaccumulate a variety of microorganisms, including viruses and bacteria that are associated with pollution sources (8,(10)(11)(12). Significantly, molluscan shellfish have been found to retain viruses to a greater extent and for much longer periods than they do bacteria (8,13,14). Bivalve molluscs, therefore, may become contaminated with NoV when they are grown in harvesting areas contaminated with human wastes.In the United States and in Canada, ar...