Histamine, a biogenic amine (BA), plays a significant role in various pathophysiological processes and is present in food supplies, serving as an indicator of freshness and microbial degradation. It is a major cause of food poisoning outbreaks, triggering allergic inflammatory responses. Detecting histamine in food is crucial because its toxic threshold does not affect the food's taste, making contaminated items appear normal. To address this challenge, label‐free and bioactive‐free electrochemical sensors utilizing molecularly imprinted polymers (MIPs) offer the desired selectivity, scalability, and efficiency. MIPs are synthetic materials designed to mimic biological receptors. This paper reviews a decade of research on MIP‐assisted electrochemical sensors for histamine detection, focusing on their scalability, robustness, speed, and selectivity. The review critically analyzes the performance of these sensors in detecting histamine in food, beverages, human serum, and body diagnostics. Additionally, the current understanding of the physiological effects of endogenous and ingested histamine is reviewed, highlighting both established and emerging methods for its quantification in food and health management. The potential for transforming healthcare delivery through personalized Point‐of‐Care (POC) systems, integrated with Artificial Intelligence (AI) and Internet‐of‐Medical Things (IoMT) technologies, is also discussed.