Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Background Atopic dermatitis (AD) is a common pediatric skin disease, with recent studies suggesting a role for ferroptosis in its pathogenesis. Sodium propionate (SP) has shown therapeutic potential in AD, yet its mechanism, particularly regarding ferroptosis modulation, remains unclear. This study aims to explore whether SP alleviates AD by modulating ferroptosis-related pathways through bioinformatic and in vitro analyses. Methods We analyzed the GEO AD cohort (GSE107361). Ferroptosis-related genes was compiled from the GeneCards Database and SP-associated therapeutic target genes were obtained from Swiss Target Prediction. To explore potential biological mechanisms, we employed Gene Set Variation Analysis (GSVA), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. Weighted Gene Co-expression Network Analysis (WGCNA) and differential expression analysis identified key gene modules. We also established TNF-α/IFN-γ induced AD cell models using HaCat cells and collected cell samples for further experiments. Results The GSVA analysis demonstrated that ferroptosis-related genes could differentiate between healthy children and those with AD. The identified module includes genes with correlated expression patterns specifically linked to AD. Analysis using three algorithms identified potential therapeutic targets of SP. We screened 51 key genes related to AD and ferroptosis, selecting cyclin-dependent kinase 1 (CDK1) and latent transforming growth factor beta binding protein 2 (LTBP2) as co-expressed genes. Machine learning identified fatty acid binding protein 4 (FABP4) as a significant gene intersection of the 51 key genes. The bioinformatics analysis results were validated through cell experiments, showing that SP treatment increased the expression of the damaged skin genes loricrin (LOR) and filaggrin (FLG). Conclusion Our study indicates that SP may alleviate AD symptoms by modulating ferroptosis through the LTBP2/FABP4 pathway.
Background Atopic dermatitis (AD) is a common pediatric skin disease, with recent studies suggesting a role for ferroptosis in its pathogenesis. Sodium propionate (SP) has shown therapeutic potential in AD, yet its mechanism, particularly regarding ferroptosis modulation, remains unclear. This study aims to explore whether SP alleviates AD by modulating ferroptosis-related pathways through bioinformatic and in vitro analyses. Methods We analyzed the GEO AD cohort (GSE107361). Ferroptosis-related genes was compiled from the GeneCards Database and SP-associated therapeutic target genes were obtained from Swiss Target Prediction. To explore potential biological mechanisms, we employed Gene Set Variation Analysis (GSVA), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. Weighted Gene Co-expression Network Analysis (WGCNA) and differential expression analysis identified key gene modules. We also established TNF-α/IFN-γ induced AD cell models using HaCat cells and collected cell samples for further experiments. Results The GSVA analysis demonstrated that ferroptosis-related genes could differentiate between healthy children and those with AD. The identified module includes genes with correlated expression patterns specifically linked to AD. Analysis using three algorithms identified potential therapeutic targets of SP. We screened 51 key genes related to AD and ferroptosis, selecting cyclin-dependent kinase 1 (CDK1) and latent transforming growth factor beta binding protein 2 (LTBP2) as co-expressed genes. Machine learning identified fatty acid binding protein 4 (FABP4) as a significant gene intersection of the 51 key genes. The bioinformatics analysis results were validated through cell experiments, showing that SP treatment increased the expression of the damaged skin genes loricrin (LOR) and filaggrin (FLG). Conclusion Our study indicates that SP may alleviate AD symptoms by modulating ferroptosis through the LTBP2/FABP4 pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.