Molybdenum Sulfide Clusters as Molecular Co-Catalyst on Antimony Selenide Photocathodes for Photoelectrochemical Hydrogen Evolution
Pardis Adams,
Jan Bühler,
Iva Walz
et al.
Abstract:Molybdenum sulfide serves as an effective non-precious metal catalyst for hydrogen evolution, primarily active at edge sites with unsaturated molybdenum sites or terminal disulphides. To improve the activity at low loading density, two molybdenum sulfide clusters, [Mo3S4]4+ and [Mo3S13]2–, were investigated. The Mo3Sx molecular catalysts were heterogenized on Sb2Se3 with a simple soaking treatment, resulting in a thin catalyst layer of only a few nanometers that gave up to 20 mA cm–2 under one sun illumination… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.