In this paper generalized moment functions are considered. They are closely related to the well-known functions of binomial type which have been investigated on various abstract structures. The main purpose of this work is to prove characterization theorems for generalized moment functions on commutative groups. At the beginning a multivariate characterization of moment functions defined on a commutative group is given. Next the notion of generalized moment functions of higher rank is introduced and some basic properties on groups are listed. The characterization of exponential polynomials by means of complete (exponential) Bell polynomials is given. The main result is the description of generalized moment functions of higher rank defined on a commutative group as the product of an exponential and composition of multivariate Bell polynomial and an additive function. Furthermore, corollaries for generalized moment function of rank one are also stated. At the end of the paper some possible directions of further research are discussed.