The momentum ray transform $$I_m^k$$
I
m
k
integrates a rank m symmetric tensor field f on $${{{\mathbb {R}}}}^n$$
R
n
over lines with the weight $$t^k$$
t
k
, $$I_m^kf(x,\xi )=\int _{-\infty }^\infty t^k\langle f(x+t\xi ),\xi ^m\rangle \,\textrm{d}t$$
I
m
k
f
(
x
,
ξ
)
=
∫
-
∞
∞
t
k
⟨
f
(
x
+
t
ξ
)
,
ξ
m
⟩
d
t
. We compute the normal operator $$N_m^k=(I_m^k) ^*I_m^k$$
N
m
k
=
(
I
m
k
)
∗
I
m
k
and present an inversion formula recovering a rank m symmetric tensor field f from the data $$(N_m^0f,\dots ,N_m^mf)$$
(
N
m
0
f
,
⋯
,
N
m
m
f
)
.