The Internet of things (IoT) paradigm promotes the emergence of solutions to enable energy-management strategies. However, these solutions may favor the disposal or replacement of outdated but still necessary systems. Thus, a proposal that advocates the retrofit of pre-existing systems would be an alternative to implement energy monitoring. In this sense, this work presents a strategy for monitoring electrical parameters in real time by using IoT solutions, cloud-resident applications, and retrofitting of legacy building electrical systems. In this implementation, we adapted the SmartLVGrid metamodel to systematize the insertion of remote monitoring resources in low-voltage circuits. For this, we developed embedded platforms for monitoring the circuits of a building electrical panel and application for visualization and data storage in the cloud. With this, remote monitoring of the consumer unit was carried out in relation to energy demand, power factor, and events of variations of electrical parameters in the circuits of the legacy distribution board. We also carried out a case study with the proposed system, identifying events of excess demand in the consumer unit, mitigating the individual contribution of the installation circuits in this process. Therefore, our proposal presents an alternative to enable energy management and maximum use of existing resources.