2019
DOI: 10.1016/j.rsase.2018.10.005
|View full text |Cite
|
Sign up to set email alerts
|

Monitoring and predicting the potential distribution of alien plant species in arid ecosystem using remotely-sensed data

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
3
0
2

Year Published

2019
2019
2024
2024

Publication Types

Select...
8
1

Relationship

0
9

Authors

Journals

citations
Cited by 10 publications
(5 citation statements)
references
References 58 publications
0
3
0
2
Order By: Relevance
“…estimated actual and potential evapotranspiration; Abatzoglou, 2013; Senay et al., 2013) and those based on remotely sensed information (e.g. indices representing surface water; Halmy et al., 2019). We also included information on topography (e.g.…”
Section: Methodsmentioning
confidence: 99%
“…estimated actual and potential evapotranspiration; Abatzoglou, 2013; Senay et al., 2013) and those based on remotely sensed information (e.g. indices representing surface water; Halmy et al., 2019). We also included information on topography (e.g.…”
Section: Methodsmentioning
confidence: 99%
“…Estas diferencias podrían atribuirse a que el nicho climático de las EEI no se ha conservado entre la región nativa y de invasión en Ecuador. Dicho aspecto tendría importantes implicaciones para la invasión, ya que las especies podrían tolerar nuevos climas y expandir su invasión más allá de las condiciones favorables conocidas en las regiones nativas (Halmy et al, 2019). Se conoce que para muchas EEI la similitud climática entre los rangos nativos y de invasión puede facilitar la invasión (Petitpierre et al, 2012;Obiakara y Fourcade, 2018).…”
Section: Discussionunclassified
“…Given the similar spectral responses among plant species, several studies reported a decrease in classification accuracy when variables derived from RS data were used alone [5,106,110,111]. Conversely, many studies have reported not only that adding a spectral variable to environmental variables increases OCC accuracy [82,[110][111][112], particularly when classifying climate-unstructured plant species [59], but also that the spectral variable often contributes the most [36,46]. Two other studies reported that adding spectral variables did enhance the spatial scale of the map substantially [54,106].…”
Section: Combining Variables Improves Occ Performancementioning
confidence: 99%