Landslide displacement prediction has garnered significant recognition as a pivotal component in realizing successful early warnings and implementing effective control measures. This task remains challenging as landslide deformation involves not only temporal dependency within time series data but also spatial dependence across various regions within landslides. The present study proposes a landslide spatiotemporal displacement forecasting model by introducing attention-based deep learning algorithms based on spatiotemporal analysis. The Maximal Information Coefficient (MIC) approach is employed to quantify the spatial and temporal correlations within the daily data of Global Navigation Satellite System (GNSS) observations. Based on the quantitative spatiotemporal analysis, the proposed prediction model combines a convolutional neural network (CNN) and long short-term memory (LSTM) network to capture spatial and temporal dependencies individually. Spatial–temporal attention mechanisms are implemented to optimize the model. Additionally, we develop a single-point prediction model using LSTM and a multiple-point prediction model using the CNN-LSTM without an attention mechanism to compare the forecasting capabilities of the attention-based CNN-LSTM model. The Outang landslide in the Three Gorges Reservoir Area (TGRA), characterized by a large and active landslide equipped with an advanced monitoring system, is taken as a studied case. The temporal MIC results shed light on the response times of monitored daily displacement to external factors, showing a lagging duration of between 10 and 50 days. The spatial MIC results indicate mutual influence among different locations within the landslide, particularly in the case of nearby sites experiencing significant deformation. The attention-based CNN-LSTM model demonstrates an impressive predictive performance across six monitoring stations within the Outang landslide area. Notably, it achieves a remarkable maximum coefficient of determination (R2) value of 0.9989, accompanied by minimum values for root mean squared error (RMSE), absolute mean error (MAE), and mean absolute percentage error (MAPE), specifically, 1.18 mm, 0.99 mm, and 0.33%, respectively. The proposed model excels in predicting displacements at all six monitoring points, whereas other models demonstrate strong performance at specific individual stations but lack consistent performance across all stations. This study, involving quantitative deformation characteristics analysis and spatiotemporal displacement prediction, holds promising potential for a more profound understanding of landslide evolution and a significant contribution to reducing landslide risk.