The use of model-driven approaches for embedded system design has become a common practice. Among these model-driven approaches, only a few of them include the generation of a fullsystem simulation comprising operating system, code generation for tasks and hardware simulation models. Even less common is the extension to massively parallel, NoC based designs, such as required for high performance streaming applications where dozens of tasks are replicated onto identical general purpose processor cores of a Multi-processor System-on-chip (MP-SoC). We present the extension of a system-level tool to handle clustered Network-on-Chip (NoC) with virtual prototyping platforms. On the one hand, the automatic generation of the virtual prototype becomes more complex as topcell, address mapping and linker script have to be adapted. On the other hand, the exploration of the design space is particularly important for this class of applications, as performance may strongly be impacted by Non Uniform Memory Access (NUMA).