Thermal barrier coatings (TBCs) can significantly reduce the operating temperature of the aeroengine turbine blade substrate, and their testing technology is very urgently demanded. Due to their complex multi-layer structure, it is hard to evaluate TBCs with a single function sensor. In this paper, an electromagnetic/capacitive composite sensor is proposed for the testing of thermal barrier coatings. The dielectric material is tested with planar capacitor, and the metallic material is tested with electromagnetic coils. Then, the comprehensive test and evaluation of thermal barrier coating system can be realized. The sensor is optimized by means of theoretical and simulation analysis, and the interaction between the planar capacitor and the electromagnetic coil is studied. The experimental system is built based on an impedance analyser and multiplex unit to evaluate the performance of the composite sensor. The transimpedances and capacitances are measured under different coating parameters, such as thickness and permittivity of top coating as well as bond layer conductivity. The experimental results agree with the simulation analysis, and the feasibility of the sensor is proved.