A dozen species of locusts (Orthoptera: Acrididae) are a major threat to food security worldwide. Their outbreaks occur on every continent except Antarctica, threatening the livelihood of 10% of the world's population. The locusts are infamous for their voracity, polyphagy, and capacity for long-distance migrations. Decades of research revealed very complex bioecology of locusts. They exist in two, inter-convertible and density-dependent states, or "phases." Despite the evident progress in understanding locust behavior, our ability to predict and manage locust outbreaks remains insufficient, as evidenced by locust plagues still occurring during the 21st century. One of the main reasons is that locusts typically inhabit remote and scarcely populated areas, and their distribution ranges often spread across continents. This creates tremendous obstacles for locust population monitoring and control. Traditional ground locust surveys are inadequate to address the enormous spatial scale of the locust problem in a limited window of time dictated by the pest's development. Remote sensing (satellite information) appears a promising tool in locust monitoring. Satellite data are increasingly used for monitoring and forecasting two locust species, the desert and the Australian plague locust. However, applications of this geospatial technology to other locust species remain rare. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.