We present the current status of time-lapse seismic integration at the Farnsworth (FWU) CO2 WAG (water-alternating-gas) EOR (Enhanced Oil Recovery) project at Ochiltree County, northwest Texas. As a potential carbon sequestration mechanism, CO2 WAG projects will be subject to some degree of monitoring and verification, either as a regulatory requirement or to qualify for economic incentives. In order to evaluate the viability of time-lapse seismic as a monitoring method the Southwest Partnership (SWP) has conducted time-lapse seismic monitoring at FWU using the 3D Vertical Seismic Profiling (VSP) method. The efficacy of seismic time-lapse depends on a number of key factors, which vary widely from one application to another. Most important among these are the thermophysical properties of the original fluid in place and the displacing fluid, followed by the petrophysical properties of the rock matrix, which together determine the effective elastic properties of the rock fluid system. We present systematic analysis of fluid thermodynamics and resulting thermophysical properties, petrophysics and rock frame elastic properties, and elastic property modeling through fluid substitution using data collected at FWU. These analyses will be framed in realistic scenarios presented by the FWU CO2 WAG development. The resulting fluid/rock physics models will be applied to output from the calibrated FWU compositional reservoir simulation model to forward model the time-lapse seismic response. Modeled results are compared with field time-lapse seismic measurements and strategies for numerical model feedback/update are discussed. While mechanical effects are neglected in the work presented here, complementary parallel studies are underway in which laboratory measurements are introduced to introduce stress dependence of matrix elastic moduli.