Monitoring changes in vegetation cover is important for the restoration of ecosystems in the Gorontalo Regency area. The utilization of remote sensing technology makes it possible to detect the dynamics of changes in vegetation cover spatially and temporally. The Terra MODIS satellite image collection in the study area is available in large numbers and sizes. Therefore, cloud computing-based spatial technology support is needed. Google Earth Engine (GEE) as a geospatial computing device is an alternative to cover this shortfall. The aim of this study is to explore the condition of vegetation cover spatially and temporally using the GEE platform. A total of 43 MODIS images in the study area, recording periods 2000 and 2020, were used to quickly and effectively generate vegetation cover maps. The process of downloading, processing, and analyzing data was automated through the GEE interface. The results of the mapping in 2000 and 2020 are shown by maps of vegetation cover in two classes, namely; vegetation and non-vegetation. The accuracy of the vegetation cover map shows good results, namely an overall accuracy of 0.81 for 2000 and 0.85 for 2020. The area of the non-vegetation class increased by 2815.29 ha, and the vegetation class decreased by 2767.31 ha. The map of spatial changes in vegetation cover in the study area is classified into three classes, namely revegetation, devegetation, and unchanged. Based on these results, the extraction of vegetation cover changes in the study area using the GEE platform can be carried out well.