Non-destructive electromagnetic tests based on magnetic noise analysis have been developed to study, among others, residual stress, heat treatment outcomes, and harmful microstructures in terms of toughness. When subjected to thermal cycles above 550 °C, duplex stainless steels form an extremely hard and chromium-rich constituent that, if it is superior to 5%, compromises the steel’s corrosion resistance and toughness. In the present work, a study was carried out concerning the interaction of excitation waves with duplex stainless steel. Hence, by analyzing the magnetic noise and variations in the amplitude of the first harmonic of the excitation waves, the detection of the deleterious sigma phase in SAF 2205 steel is studied. To simplify the test, a Hall effect sensor replaced the pick-up coil placed on the opposite surface of the excitation coil. Sinusoidal excitation waves of 5 Hz and 25 Hz with amplitudes ranging from 0.25 V to 9 V were applied to samples with different amounts of the sigma phase, and the microstructures were characterized by scanning electron microscopy. The results show that the best testing condition consists of applying waves with amplitudes from 1 V to 2 V and using the first harmonic amplitude. Thus, the test proved effective for detecting the formation of the deleterious sigma phase and can follow the ability to absorb energy by impact and, thus, the material embrittlement.