This paper provides a state-of-the-art review on the investigations into the residual stresses in metallic structural materials generated by grinding. The materials covered include steels, titanium alloys, and nickel-based superalloys. The formation mechanisms of the residual stresses and their impacts are specifically discussed. Some major influential factors on the residual stresses formation in grinding, such as grinding wheel characteristics, dressing techniques, grinding parameters, cooling conditions, and properties of workpiece materials, are analyzed in detail. These include experimental measurement, modeling, simulation, knowledge-based monitoring, and fuzzy analysis. Finally, the paper highlights some important aspects of grinding-induced residual stresses for further investigation.