Peroxisome proliferator-activated receptor ␥ coactivator 1␣ (PGC-1␣) is an attractive candidate gene for type 2 diabetes, as genes of the oxidative phosphorylation (OXPHOS) pathway are coordinatively downregulated by reduced expression of PGC-1␣ in skeletal muscle and adipose tissue of patients with type 2 diabetes. Here we demonstrate that transgenic mice with activated polyamine catabolism due to overexpression of spermidine/spermine N 1 -acetyltransferase (SSAT) had reduced white adipose tissue (WAT) mass, high basal metabolic rate, improved glucose tolerance, high insulin sensitivity, and enhanced expression of the OXPHOS genes, coordinated by increased levels of PGC-1␣ and 5-AMP-activated protein kinase (AMPK) in WAT. As accelerated polyamine flux caused by SSAT overexpression depleted the ATP pool in adipocytes of SSAT mice and N 1 ,N 11 -diethylnorspermine-treated wild-type fetal fibroblasts, we propose that low ATP levels lead to the induction of AMPK, which in turn activates PGC-1␣ in WAT of SSAT mice. Our hypothesis is supported by the finding that the phenotype of SSAT mice was reversed when the accelerated polyamine flux was reduced by the inhibition of polyamine biosynthesis in WAT. The involvement of polyamine catabolism in the regulation of energy and glucose metabolism may offer a novel target for drug development for obesity and type 2 diabetes.Type 2 diabetes is a growing epidemic worldwide. Defects in insulin secretion and insulin action are fundamental disorders of this disease (30). Several mechanisms regulating insulin secretion and insulin action have been identified, but none of them is likely to explain completely the risk of type 2 diabetes. Previous studies have revealed novel mechanisms, distinct from the insulin signaling pathway, for type 2 diabetes. Mootha et al. (36) identified a set of genes involved in oxidative phosphorylation (OXPHOS), the expression of which was coordinately decreased in human diabetic muscle. Similarly, Patti et al. (40) found the downregulation of OXPHOS not only in individuals with type 2 diabetes but also in their first-degree relatives. In both of these studies, decreased peroxisome proliferator-activated receptor (PPAR) ␥ coactivator 1␣ (PGC-1␣) expression was responsible for the downregulation of OX PHOS genes. In addition, the expression of PGC-1␣ has been shown to be downregulated in white adipose tissue (WAT) of insulin-resistant (15) and morbidly obese (50) subjects.PGC-1␣ was first identified as a coactivator of PPAR␥ (45), and it plays a critical role in the regulation of adaptive thermogenesis. Subsequent studies have demonstrated that PGC-1␣ regulates mitochondrial biogenesis (49), uncoupling (45, 56), fatty acid oxidation (61), OXPHOS (36), glucose transport in muscle (35), hepatic gluconeogenesis (64), and skeletal muscle fiber-type switching (44). PGC-1␣ is highly expressed in brown adipose tissue (BAT), heart, and skeletal muscle and moderately expressed in liver, but a low expression level is found in WAT. The expression of PGC-1␣ is ind...