We have developed an experimental strategy to monitor protein interactions in a cell with a high degree of selectivity and sensitivity. A transcription factor is tethered to a membrane-bound receptor with a linker that contains a cleavage site for a specific protease. Activation of the receptor recruits a signaling protein fused to the protease that then cleaves and releases the transcription factor to activate reporter genes in the nucleus. This strategy converts a transient interaction into a stable and amplifiable reporter gene signal to record the activation of a receptor without interference from endogenous signaling pathways. We have developed this assay for three classes of receptors: G protein-coupled receptors, receptor tyrosine kinases, and steroid hormone receptors. Finally, we use the assay to identify a ligand for the orphan receptor GPR1, suggesting a role for this receptor in the regulation of inflammation.cellular assays ͉ G protein-coupled receptor ͉ protein interaction A ll cells have evolved mechanisms to respond to rapid changes in the environment. Extracellular signals are detected by transmembrane receptors that translate binding into intracellular signaling events. Most signaling systems that respond to environmental cues exhibit adaptation mechanisms that afford the cell a facile response to rapid changes in their surroundings. Mechanisms to assure the rapid but transient response to environmental cues are of obvious advantage to the cell but seriously limit most assays for receptor function. We have genetically modified receptors such that transient responses to ligand result in the stable transcription of a reporter gene. The transformation of a transient intracellular response to a stable amplifiable readout provides a sensitive and quantitative assay for receptor function.We have developed an assay for receptor activation and more generally for protein-protein interaction that involves the fusion of a membrane receptor with a transcriptional activator. The membrane-bound receptor and transcription factor sequences are separated by a cleavage site for a highly specific viral protease. A second gene encodes a fusion of the viral protease with a cellular protein that interacts only with activated receptor. Ligand binding to the receptor will stimulate this proteinprotein interaction, recruiting the protease to its cleavage site. Site-specific cleavage will release the transcriptional regulator that can now enter the nucleus and activate reporter genes. Recently, a similar principle, based on the complementation of split tobacco etch virus (TEV) protease fragments, has been used to monitor protein interactions (1). Our experimental scheme derives conceptually from the mechanism of action of the Notch receptor in which ligand binding elicits proteolytic cleavage events in the receptor to release a Notch intracellular domain that translocates to the nucleus and modulates transcription of downstream target genes (2, 3) (Fig. 1A).The assay we have developed relies solely on exogenous genes in...