Abstract:The ability of two electronic nose systems (conducting polymer and surface acoustic wave-based) to differentiate volatiles of grapes and wines treated with an aqueous ethanol spray (5% v/v) at veraison was evaluated. Ethanol spray induced fruit ethylene production immediately posttreatment, which then declined progressively. The electronic nose evaluations of grape volatiles were compared with Cabernet franc and Merlot physicochemistry and with wine gas chromatographic and aroma sensory data. Canonical discriminant and principal component analysis found that both electronic nose systems and the physicochemical measures (Brix, TA, pH, color intensity and hue, total phenols, glycosides, and berry weight) were able to discriminate between ethanol-treated and untreated grapes and wines for both cultivars. Grape physicochemical treatment differences were due mainly to variations in hue, phenolic-free glycosides, and total phenols. Aroma sensory evaluations using a consumer panel differentiated between ethanol treatments and controls for Merlot, but not for Cabernet franc wines.