Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The tire pressure monitoring system (TPMS) is crucial for road safety, fuel efficiency, and vehicle performance. This study focuses on nitrogen‐filled pneumatic tires due to their uniform pressure management and thermal stability advantages over air‐filled tires. Using machine learning, the research analyzes TPMS data to enhance understanding of tire behavior and vehicle safety. It employs various feature extraction methods and lazy‐based classifiers to analyze vibration signals collected under idle, high‐speed, normal, and puncture conditions using MEMS accelerometers. The study examines autoregressive moving average (ARMA), histogram, and statistical features individually and in combinations (statistical‐histogram, histogram‐ARMA, statistical‐ARMA, and statistical‐histogram‐ARMA) to improve predictive accuracy. By integrating these features, the study aims to optimize predictive modeling of TPMS. Empirically, the research achieved 97.92% accuracy using the local weighted learning (LWL) algorithm, demonstrating the effectiveness of combined statistical, histogram, and ARMA features in enhancing TPMS predictive capabilities.
The tire pressure monitoring system (TPMS) is crucial for road safety, fuel efficiency, and vehicle performance. This study focuses on nitrogen‐filled pneumatic tires due to their uniform pressure management and thermal stability advantages over air‐filled tires. Using machine learning, the research analyzes TPMS data to enhance understanding of tire behavior and vehicle safety. It employs various feature extraction methods and lazy‐based classifiers to analyze vibration signals collected under idle, high‐speed, normal, and puncture conditions using MEMS accelerometers. The study examines autoregressive moving average (ARMA), histogram, and statistical features individually and in combinations (statistical‐histogram, histogram‐ARMA, statistical‐ARMA, and statistical‐histogram‐ARMA) to improve predictive accuracy. By integrating these features, the study aims to optimize predictive modeling of TPMS. Empirically, the research achieved 97.92% accuracy using the local weighted learning (LWL) algorithm, demonstrating the effectiveness of combined statistical, histogram, and ARMA features in enhancing TPMS predictive capabilities.
Addressing the critical issue of tire wear is essential for enhancing vehicle safety, performance, and maintenance. Worn-out tires often lead to accidents, underscoring the need for effective monitoring systems. This study is vital for several reasons: safety, as worn tires increase the risk of accidents due to reduced traction and longer braking distances; performance, as uneven tire wear affects vehicle handling and fuel efficiency; maintenance costs, as early detection can prevent more severe damage to suspension and alignment systems; and regulatory compliance, as ensuring tire integrity helps meet safety regulations imposed by transportation authorities. In response, this study systematically evaluates tire conditions at 25%, 50%, 75%, and 100% wear, with an intact tire as a reference, using vibration signals as the primary data source. The analysis employs statistical, histogram, and autoregressive–moving-average (ARMA) feature extraction techniques, followed by feature selection to identify key parameters influencing tire wear. CatBoost is used for feature classification, leveraging its adaptability and efficiency in distinguishing varying wear patterns. Additionally, the study incorporates feature fusion to combine different types of features for a more comprehensive analysis. The proposed methodology not only offers a robust framework for accurately classifying tire wear levels but also holds significant potential for real-time implementation, contributing to proactive maintenance practices, prolonged tire lifespan, and overall vehicular safety.
Tire pressure monitoring system (TPMS) has a critical role in safeguarding vehicle safety by monitoring tire pressure levels. Keeping the accurate tire pressure is necessary for confirming comfortable driving and safety, and improving fuel consumption. Tire problems can result from various factors, such as road surface conditions, weather changes, and driving activities, emphasizing the importance of systematic tire checks. This study presents a novel method for tire condition monitoring using weightless neural networks (WNN), which mimic neural processes using random-access memory (RAM) components, supporting fast and precise training. Wilkes, Stonham, and Aleksander Recognition Device (WiSARD), a type of WNN, stands out for its capability in classification and pattern recognition, gaining from its ability to avoid repetitive training and residual formation. For vibration data acquisition from tires, cost-effective micro-electro-mechanical system (MEMS) sensors are employed, offering a more economical solution than piezoelectric sensors. This approach yields a variety of features, such as autoregressive moving average (ARMA), statistical and histogram features. The J48 decision tree algorithm plays a critical role in selecting essential features for classification, which are subsequently divided into training and testing sets, crucial for assessing the WiSARD classifier’s efficacy. Hyperparameter optimization of the WNN leads to improved classification accuracy and shorter computation times. In practical tests, the WiSARD classifier, when optimally configured, achieved an impressive 97.92% accuracy with histogram features in only 0.008 seconds, showcasing the capability of WNN to enhance tire technology and the accuracy and efficiency of tire monitoring and maintenance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.