2020
DOI: 10.21203/rs.3.rs-71451/v1
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Monitoring the Damage of Armyworm in Summer Corn by Unmanned Aerial Vehicle Imaging

Abstract: Background: Monitoring armyworm (Mythimna separata Walker) damage in crops requires timely, rapid and accurate observations to avoid severe yield losses. Results: The Random Forest (RF) classifier was more effective at automatically and accurately monitoring armyworm damage compared with Support Vector Machine (SVM), Multilayer Perceptron Classifier (MLPC) and Naive Bayes Classifier (NB) classifiers. Furthermore, the incorporation of an Unmanned Aerial Vehicle (UAV) image-generated digital surface model improv… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 50 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?