Individual ray arrivals were not observed. Rather, the arrival patterns consisted of a single, stable, broad arrival pulse of about 100 ms duration. Travel time variations of 60.15 s recorded the vigorous mesoscale environment of the region and the seasonal cycle. To estimate ocean temperature from the tomography data an inverse scheme employed a high-resolution ocean model for Fram Strait as the reference ocean. The information from the tomographic measurements is primarily average temperature. Estimated temperatures, averaged over 0-1000 m depth and over range, had a mean of 1.118C and variations of 60.338C; the uncertainty of the tomography estimates was about 60m8C. Agreement with an alternate inverse approach based on EOFs and a Markov Chain Monte Carlo inversion scheme relying on a matched-peak approach was excellent, indicating a robust estimate for ocean temperature. The inverse estimates for average temperature agreed with the equivalent estimates from hydrographic sections obtained along the acoustic path at the start and end of the program. Among other deficiencies, the ocean model greatly underestimated the intensity of the mesoscale fluctuations and exhibited a warm bias of about 0.388C in section-averaged temperature. Tomographic measurements in Fram Strait offer unique large-scale temperature constraints for ocean models through data assimilation. It is anticipated that these constraints will lead to more accurate estimates of the circulation and transports in Fram Strait.