Coal mining leads to surface subsidence, landslides, soil erosion and other problems that seriously threaten the life and property safety of residents in mining areas, and it is urgent to obtain mining subsidence information using high-frequency, high-precision and large-scale monitoring methods. Therefore, this paper mainly studies the deformation monitoring of the Datong mining area using Lutan-1 monostatic and bistatic SAR data. Firstly, the latest Lutan-1 bistatic data are used to reconstruct the DSM, and the interferometric calibration method is used to improve the accuracy of the DSM. Then, the surface deformation monitoring of the mining area is implemented by using DInSAR, SBAS-InSAR and Stacking-InSAR with the reconstructed DSM data and Lutan-1 monostatic SAR data. Finally, the deformation monitoring results are compared with the surface deformation results based on the TanDEM data, and both the results are evaluated using the filed leveling data. Taking 20 images covering the Datong mining area as the data sources, the surface deformation results obtained using different InSAR methods in the mining area were quantitatively evaluated and analyzed. The results indicated that: (1) the DSM obtained using the Lutan-1 bistatic SAR data was assessed and demonstrated with the ICESat laser altimetry data an error of 2.8 m, which meets the Chinese 1:50,000 scale DEM cartographic accuracy standard, and the difference analysis with the TanDEM data shows that the terrain changes are mainly distributed in mountainous areas; (2) Due to the improvement in resolution, the registration accuracy of the SAR images and LT-DSM is higher than that of the TanDEM data in the range direction and azimuth direction; (3) Via evaluation with the filed leveling data, it is found that the surface deformation measurement results based on LT-DSM are less affected by terrain, and the accuracy of LT-DSM-SBAS and LT-DSM-DInSAR is improved by 11.5% and 16.3%, respectively, compared with TanDEM-SBAS and TanDEM-DInSAR, which demonstrates the effectiveness of the Lutan-1 bistatic and monostatic data for mine deformation monitoring.