Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
In this paper, we propose 3 new control charts for monitoring the lower Weibull percentiles under complete data and Type‐II censoring. In transforming the Weibull distribution to the smallest extreme value distribution, Pascaul et al (2017) presented an exponentially weighted moving average (EWMA) control chart, hereafter referred to as EWMA‐SEV‐Q, based on a pivotal quantity conditioned on ancillary statistics. We extended their concept to construct a cumulative sum (CUSUM) control chart denoted by CUSUM‐SEV‐Q. We provide more insights of the statistical properties of the monitoring statistic. Additionally, in transforming a Weibull distribution to a standard normal distribution, we propose EWMA and CUSUM control charts, denoted as EWMA‐YP and CUSUM‐YP, respectively, based on a pivotal quantity for monitoring the Weibull percentiles with complete data. With complete data, the EWMA‐YP and CUSUM‐YP control charts perform better than the EWMA‐SEV‐Q and CUSUM‐SEV‐Q control charts in terms of average run length. In Type‐II censoring, the EWMA‐SEV‐Q chart is slightly better than the CUSUM‐SEV‐Q chart in terms of average run length. Two numerical examples are used to illustrate the applications of the proposed control charts.
Monitoring changes in the Weibull mean and variance simultaneously is of interest in quality control. The mean and variance of a Weibull process are determined by its shape and scale parameters. Most studies are focused on monitoring the Weibull scale parameter with fixed shape parameter or the Weibull shape parameter with fixed scale parameter. In this paper, we propose an exponentially weighted moving average chart based on the likelihood‐ratio test and an inverse error function called ELR chart to monitor changes in the Weibull mean and variance simultaneously. The simulation approach is used to derive the average run length. We compare our proposed chart with other existing control charts for 3 cases, including scale parameter changes with fixed shape parameter, shape parameter changes with fixed scale parameter, and both parameters changes. The results show that the ELR chart outperforms the other control charts in terms of average run length in most cases. Two numerical examples are used to illustrate the applications of the proposed control chart.
Bayes-conditional control chart has been used for monitoring the Weibull percentiles with complete data and type-II censoring. Firstly, the Weibull data are transformed to the smallest extreme value (SEV) distribution. Secondly, the posterior median of quantiles is used as a monitoring statistic. Finally, a pivotal quantity based on the monitoring statistic with its conditional distribution function is derived for obtaining the control limits. This control chart is denoted as Shewhart-SEV-e Q Bp . In this study, we extend this work based on an exponential weighted moving average model named exponential weighted moving average-SEV-e Q Bp for monitoring the Weibull percentiles.We provide the statistical properties of the monitoring statistic. The average run length and the standard deviation of run lengths, computed by the integral equation approach, are used as performance measures. The results indicate that the proposed chart performs better than the Shewhart-SEV-e Q Bp . The breaking strength of carbon fibers is used to illustrate the application of the proposed control chart.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
BlogTerms and ConditionsAPI TermsPrivacy PolicyContactCookie PreferencesDo Not Sell or Share My Personal Information
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.