Highways provide commuter traffic and goods movement among regions and cities through wild, protected areas. Wildlife-vehicle collisions (WVC) can occur frequently when wildlife are present, impacting drivers and animals. Because collisions are often avoidable with constructed mitigation and reduced speeds, transportation agencies often want to know where they can act most effectively and what kinds of mitigation are cost-effective. For this study, WVC occurrences were obtained from two sources: 1) highway agencies that monitor carcass retrieval and disposal by agency maintenance staff and 2) opportunistic observations of carcasses by participants in two statewide systems, the California Roadkill Observation System (CROS; http://wildlifecrossing.net/california) and the Maine Audubon Wildlife Road Watch (MAWRW; http://wildlifecrossing.net/maine). Between September, 2009 and December 31, 2014, >33,700 independent observations of >450 vertebrate species had been recorded in these online, form-based informatics systems by >1,300 observers. We asked whether or not WVC observations collected by these extensive, volunteer-science networks could be used to inform transportation-mitigation planning. Cluster analyses of volunteer-observed WVC were performed using spatial autocorrelation tests for parts or all of 34 state highways and interstates. Statistically-significant WVC hotspots were modeled using the GetisOrd Gi* statistic. High density locations of WVC, that were not necessarily hotspots, were also visualized. Statistically-significant hotspots were identified along ~7,900 km of highways. These hotspots are shown to vary in position from year to year. For highways with frequent deer-vehicle collisions, annual costs from