Rabbits are often preferred to be experimental animals during the skin research. The visualizing and understanding the full-thickness structure of rabbit skin has significance in biology, medicine, and animal husbandry. In this study, multiphoton microscopy (MPM) was employed to examine the rabbit skin on the back, which was based on second harmonic generation and two-photon excited fluorescence. High-resolution images were achieved from the fresh, unfixed, and unstained tissues, showing detailed microstructure of the skin without the administration of exogenous contrast agents. The morphology and distribution of the main components of epidermis and dermis, such as keratin, collagen fibers, elastic fibers, and hair follicles, can be distinctly identified in MPM images. Since the changes in these components are tightly related to skin diseases and wound healing, the noninvasive nature of MPM enables it become a valuable tool in skin research for detecting and monitoring.