2023
DOI: 10.1109/access.2023.3277620
|View full text |Cite
|
Sign up to set email alerts
|

Monitors That Learn From Failures: Pairing STL and Genetic Programming

Abstract: In several domains, systems generate continuous streams of data during their execution, including meaningful telemetry information, that can be used to perform tasks like preemptive failure detection. Deep learning models have been exploited for these tasks with increasing success, but they hardly provide guarantees over their execution, a problem which is exacerbated by their lack of interpretability. In many critical contexts, formal methods, which ensure the correct behavior of a system, are thus necessary.… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2023
2023
2025
2025

Publication Types

Select...
2
1

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
references
References 46 publications
0
0
0
Order By: Relevance