The emulsifying components in cream are very important in controlling the physical characteristics of whipped cream. The effects of those components on the stability of fat globules and the physical characteristics of whipped cream were investigated. A low-molecular-weight emulsifier, and protein ingredients such as sodium caseinate and a casein partial hydrolysate (casein peptides), were used as emulsifying components in this investigation. The viscosity of deaerated whipped cream (called the serum viscosity) was measured to evaluate the degree of fat-globule aggregation. Furthermore, the shape-retention ability, which is the degree of reduction in the firmness of whipped cream between immediately after whipping and after 1d of refrigeration, was explored. The addition of the low-molecular-weight emulsifier in the continuous phase of dairy cream, which does not contain added low-molecular-weight emulsifiers, increased the stability of the fat globules and reduced the shape-retention ability of the whipped cream. The addition of protein ingredients (sodium caseinate and casein peptides) to the continuous phase of dairy cream had little effect. However, the addition of casein peptide in the continuous phase of dairy cream together with the low-molecular-weight emulsifier reduced the effect of the low-molecular-weight emulsifier on the stabilization of fat globules and the shape-retention ability of the whipped cream. The addition of casein peptide did not recover the serum viscosity; thus, other mechanisms might underlie this phenomenon.