To improve basic knowledge about the neurochemical organization of the urodele brain, and to study discrepancies in the localization of monoaminergic markers, we immunohistochemically charted the distribution of four such markers (tyrosine hydroxylase, aromatic L-amino acid decarboxylase, dopamine, and serotonin) in the axolotl (Ambystoma mexicanum) forebrain. Catecholaminergic and serotoninergic systems were found in similar locations to those seen in other Urodela. As seen in other vertebrates, the localization of the different monoaminergic markers reveals some inconsistencies. Cells that are exclusively tyrosine hydroxylase-immunoreactive are observed in the olfactory bulb, anterior olfactory nucleus/nucleus accumbens region, the epichiasmatic portion of the preoptic nucleus, and in the pars intercalaris thalami, whereas cells that are only labelled by aromatic L-amino acid decarboxylase are seen in the anterior olfactory nucleus/nucleus accumbens region, the bed nuclei of the anterior commissure, the posterior portion of the preoptic nucleus, the ventral hypothalamus, and the pars intercalaris thalami. The presence of cells solely serotonin (5-HT)-immunoreactive is suggested for the nucleus infundibularis dorsalis. Conversely, there were no areas that appeared to be exclusively immunoreactive for dopamine. Double-labelling for aromatic L-amino acid decarboxylase/tyrosine hydroxylase and aromatic L-amino acid decarboxylase/serotonin, together with cell counting, confirmed the existence of neurons that express only one monoaminergic marker in amphibian, supporting the hypothesis that these cells are universally present in the central nervous system of vertebrates.