Deep-ultraviolet (UV) microscopy enables label-free, high-resolution, quantitative molecular imaging and enables unique applications in biomedicine, including the potential for fast hematological analysis at the point-of-care. UV microscopy has been shown to quantify hemoglobin content and white blood cells (five-part differential), providing a simple alternative to the current gold standard, the hematological analyzer. Previously, however, the UV system comprised a bulky broadband laser-driven plasma light source along with a large and expensive camera and 3D translation stage. Here, we present a modified deep-UV microscope system with a compact footprint and low-cost components. We detail the novel design with simple, inexpensive optics and hardware to enable fast and accurate automated imaging. We characterize the system, including a modified low-cost web-camera and custom automated 3D translation stage, and demonstrate its ability to scan and capture large area images. We further demonstrate the capability of the system by imaging and analyzing blood smears, using previously trained networks for automatic segmentation, classification (including 5-part white blood cell differential), and colorization. The developed system is approximately 10 times less expensive than previous configurations and can serve as a point-of-care hematology analyzer, as well as be applied broadly in biomedicine as a simple compact, low-cost, quantitative molecular imaging system.