Production of artificial gamma-ray source usually is a conception belonging to the category of experimental nuclear physics. Nuclear physicists achieve this goal through utilizing/manipulating nucleons, such as proton and neutron. Low-energy electrons are often taken as "by-products" when preparing these nucleons by ionizing atoms, molecules and solids, and high-energy electrons or β rays are taken as "wastage" generated in nuclear reaction. Utilization of those "by-products" has not won sufficient attention from the nuclear physics community. In this chapter, we point out a potential, valuable utilization of those "by-products." Based on a universal principle of achieving powerful mono-color radiation source, we propose how to set up an efficient powerful electron-based gamma-ray source through available solid-state components/elements. Larger charge-to-mass ratio of an electron warrants the advantage of electron-based gamma-ray source over its nucleonbased counterpart. Our technique offers a more efficient way of manipulating nuclear matter through its characteristic EM stimulus. It can warrant sufficient dose/brightness/intensity and hence an efficient manipulation of nuclear matter. Especially, the manipulation of a nucleus is not at the cost of destroying many nuclei to generate a desired tool, that is, gamma ray with sufficient intensity, for achieving this goal. This fundamentally warrants a practical manipulation of more nuclei at desirable number.