Disseminated intravascular coagulation (DIC) is an acquired disorder characterized by systemic activation of blood coagulation, which can arise from various causes. Owing to its abrupt onset, rapid progression, and high mortality rate, DIC presents a major clinical challenge. Anticoagulant drugs, such as heparin or low-molecular-weight heparin, are the current gold standard of treatment; however, these interventions pose considerable bleeding risks. Thus, safer and more effective therapeutic strategies are urgently required. Owing to their strong anti-inflammatory and tissue repair capabilities, mesenchymal stem cell-derived exosomes (MSC-Exos) have gained considerable attention as novel therapeutic options for numerous disorders, including DIC. Their stability in diverse pathological states highlights their potential as promising candidates for DIC therapy. This review presents the latest insights on the pathogenesis of DIC and anti-inflammatory and anticoagulant properties of MSC-Exos. We aimed to elucidate the potential mechanisms by which MSC-Exos influence DIC pathogenesis. We speculate that MSC-Exos offer a multifaceted approach to DIC treatment by attenuating neutrophil extracellular trap formation, modulating M1/M2 macrophage polarization, altering Nrf2/NF-κB signalling pathway to downregulate pro-inflammatory factors, and correcting imbalances in the coagulation-fibrinolysis system through anticoagulant routes. This suggests that MSC-Exos are a potential paradigm in DIC therapy, offering novel targets and treatment modalities for DIC management.