Abiotic stresses constitute a serious threats to the world food security as they cause significant economic losses in terms of reduction in crop productivity and also greatly limit the geographical locations where crops can be grown. Exposure to abiotic stress causes over-production of reactive oxygen species, leading to oxidative stress in plants. Induction of oxidative stress is primarily responsible for a variety of detrimental changes in the cellular physiology. However, plants have evolved intricate anti-oxidative defence machinery, for their survival under stress. Plant defence strategies for stress tolerance rely on the expression of anti-oxidative genes required for scavenging the toxic reactive oxygen species. Monodehydroascorbate reductase is one of the key anti-oxidant enzyme responsible for scavenging reactive oxygen species. In the present study, efforts have been made to understand the role of monodehydroascorbate reductase in finger millet under different abiotic stresses (drought, salt and UV radiation). The study establishes a differential link between mdar gene expression and enzyme activity under oxidative stress that is validated under different types of imposed stresses. Alteration in correlation between gene expression and enzyme activities under varying magnitude of oxidative stress is elucidated.