Carbon nanotubes have been explored as interconnects in solid acid fuel cells to improve the link between nanoscale Pt catalyst particles and macroscale current collectors. The nanotubes were grown by chemical vapor deposition on carbon paper substrates, using nickel nanoparticles as the catalyst, and were characterized using scanning electron microscopy and Raman spectroscopy. The composite electrode material, consisting of CsH 2 PO 4 , platinum nanoparticles, and platinum on carbon-black nanoparticles, was deposited onto the nanotube-overgrown carbon paper by electrospraying, forming a highly porous, fractal structure. AC impedance spectroscopy in a symmetric cell configuration revealed a significant reduction of the electrode impedance as compared to similarly prepared electrodes without carbon nanotubes.