Abstract. The porous structure of TEOS derived silica gels was studied using nitrogen adsorption at 77 K. Silica gels were prepared using TEOS, H20 and ethanol for different molar ratios. No catalyst was used in this study. Silica gels were also heat treated up to 1000~ The nitrogen sorption isotherms were analyzed by two models: Fractal and Percolation Theories. Using the fractal analysis approach, the surface roughness of the porous structure of silica gels was determined. The surface fractal dimension depends on the hydrolysis conditions and heat treatment. The surface fractal dimension decreases with increasing H20/TEOS molar ratio or heating temperature. For the silica gels studied, the surface fractal dimension changed from 2.6 to 2.5 after heating the gels, and from 2.4 to 2.6 with decreasing H20/TEOS ratio.Using the Percolation theory, we have determined the connectivity of the porous structure of silica gels. The extent of sorption hysteresis of the nitrogen isotherms reflects the connectivity of the pore network. The mean coordination number (connectivity) Z, and the linear dimension of the network, L, have been calculated from the hysteresis of the isotherms. For the as-prepared silica gels, Z was about 8 and L close to 2. On heating the gels, Z decreases to 4 and L increases to 7, results which are in accordance with the collapse of the porous network.